行为模式
责任链模式
责任链模式是一种行为设计模式, 允许你将请求沿着处理者链进行发送。 收到请求后, 每个处理者均可对请求进行处理, 或将其传递给链上的下个处理者。比如 kratos
,gin
等开源库的中间件实现。
代码实现
1package main
2
3import (
4 "context"
5 "fmt"
6)
7
8type Handler func(ctx context.Context, req interface{}) (resp interface{}, err error)
9
10type Middleware func(next Handler) Handler
11
12func Chain(middlewares ...Middleware) Middleware {
13 return func(next Handler) Handler {
14 for i := len(middlewares) - 1; i >= 0; i-- {
15 next = middlewares[i](next)
16 }
17 return next
18 }
19}
20
21func main() {
22 c := Chain(func(next Handler) Handler {
23 return func(ctx context.Context, req interface{}) (resp interface{}, err error) {
24 fmt.Println("handler 1 before")
25 resp, err = next(ctx, req)
26 fmt.Println("handler 1 after")
27 return resp, err
28 }
29 }, func(next Handler) Handler {
30 return func(ctx context.Context, req interface{}) (resp interface{}, err error) {
31 fmt.Println("handler 2 before")
32 resp, err = next(ctx, req)
33 fmt.Println("handler 2 after")
34 return resp, err
35 }
36 })
37 resp, err := c(func(ctx context.Context, req interface{}) (resp interface{}, err error) {
38 fmt.Println("handler req:", req)
39 return req, nil
40 })(context.Background(), "hello")
41 fmt.Println(resp, err)
42}
43
44/*
45handler 1 before
46handler 2 before
47handler req: hello
48handler 2 after
49handler 1 after
50hello <nil>
51*/
观察者模式
观察者模式用于触发联动。一个对象的改变会触发其它观察者的相关动作,而此对象无需关心连动对象的具体实现。
代码实现
1package main
2
3import "fmt"
4
5type subject interface {
6 register(Observer observer)
7 deregister(Observer observer)
8 notifyAll()
9}
10
11type observer interface {
12 update(string)
13 getID() string
14}
15
16type item struct {
17 observerList []observer
18 name string
19 inStock bool
20}
21
22func newItem(name string) *item {
23 return &item{
24 name: name,
25 }
26}
27func (i *item) updateAvailability() {
28 fmt.Printf("Item %s is now in stock\n", i.name)
29 i.inStock = true
30 i.notifyAll()
31}
32func (i *item) register(o observer) {
33 i.observerList = append(i.observerList, o)
34}
35
36func (i *item) deregister(o observer) {
37 i.observerList = removeFromslice(i.observerList, o)
38}
39
40func (i *item) notifyAll() {
41 for _, observer := range i.observerList {
42 observer.update(i.name)
43 }
44}
45
46func removeFromslice(observerList []observer, observerToRemove observer) []observer {
47 observerListLength := len(observerList)
48 for i, observer := range observerList {
49 if observerToRemove.getID() == observer.getID() {
50 observerList[observerListLength-1], observerList[i] = observerList[i], observerList[observerListLength-1]
51 return observerList[:observerListLength-1]
52 }
53 }
54 return observerList
55}
56
57type customer struct {
58 id string
59}
60
61func (c *customer) update(itemName string) {
62 fmt.Printf("Sending email to customer %s for item %s\n", c.id, itemName)
63}
64
65func (c *customer) getID() string {
66 return c.id
67}
68
69func main() {
70
71 shirtItem := newItem("Nike Shirt")
72
73 observerFirst := &customer{id: "abc@gmail.com"}
74 observerSecond := &customer{id: "xyz@gmail.com"}
75
76 shirtItem.register(observerFirst)
77 shirtItem.register(observerSecond)
78
79 shirtItem.updateAvailability()
80}
81
82/*
83Item Nike Shirt is now in stock
84Sending email to customer abc@gmail.com for item Nike Shirt
85Sending email to customer xyz@gmail.com for item Nike Shirt
86*/
模板方法模式
模版方法模式使用继承机制,把通用步骤和通用方法放到父类中,把具体实现延迟到子类中实现。使得实现符合开闭原则。
如实例代码中通用步骤在父类中实现(准备
、下载
、保存
、收尾
)下载和保存的具体实现留到子类中,并且提供 保存
方法的默认实现。
因为Golang不提供继承机制,需要使用匿名组合模拟实现继承。
此处需要注意:因为父类需要调用子类方法,所以子类需要匿名组合父类的同时,父类需要持有子类的引用。
代码实现
1package main
2
3import "fmt"
4
5type Downloader interface {
6 Download(uri string)
7}
8
9type template struct {
10 implement
11 uri string
12}
13
14type implement interface {
15 download()
16 save()
17}
18
19func newTemplate(impl implement) *template {
20 return &template{
21 implement: impl,
22 }
23}
24
25func (t *template) Download(uri string) {
26 t.uri = uri
27 fmt.Print("prepare downloading\n")
28 t.implement.download()
29 t.implement.save()
30 fmt.Print("finish downloading\n")
31}
32
33func (t *template) save() {
34 fmt.Print("default save\n")
35}
36
37type HTTPDownloader struct {
38 *template
39}
40
41func NewHTTPDownloader() Downloader {
42 downloader := &HTTPDownloader{}
43 template := newTemplate(downloader)
44 downloader.template = template
45 return downloader
46}
47
48func (d *HTTPDownloader) download() {
49 fmt.Printf("download %s via http\n", d.uri)
50}
51
52func (*HTTPDownloader) save() {
53 fmt.Printf("http save\n")
54}
55
56type FTPDownloader struct {
57 *template
58}
59
60func NewFTPDownloader() Downloader {
61 downloader := &FTPDownloader{}
62 template := newTemplate(downloader)
63 downloader.template = template
64 return downloader
65}
66
67func (d *FTPDownloader) download() {
68 fmt.Printf("download %s via ftp\n", d.uri)
69}
70
71func main() {
72 downloader := NewHTTPDownloader()
73 downloader.Download("http://example.com/abc.zip")
74
75 downloader = NewFTPDownloader()
76 downloader.Download("ftp://example.com/abc.zip")
77}
78
79/*
80prepare downloading
81download http://example.com/abc.zip via http
82http save
83finish downloading
84prepare downloading
85download ftp://example.com/abc.zip via ftp
86default save
87finish downloading
88*/
命令模式
命令模式是一种行为设计模式, 它可将请求转换为一个包含与请求相关的所有信息的独立对象。 该转换让你能根据不同的请求将方法参数化、 延迟请求执行或将其放入队列中, 且能实现可撤销操作。
命令模式本质是把某个对象的方法调用封装到对象中,方便传递、存储、调用。
示例中把主板单中的启动(start)方法和重启(reboot)方法封装为命令对象,再传递到主机(box)对象中。于两个按钮进行绑定:
- 第一个机箱(box1)设置按钮1(button1) 为开机按钮2(button2)为重启。
- 第二个机箱(box1)设置按钮2(button2) 为开机按钮1(button1)为重启。
从而得到配置灵活性。
除了配置灵活外,使用命令模式还可以用作:
- 批处理
- 任务队列
- undo, redo
等把具体命令封装到对象中使用的场合
代码实现
1package command
2
3import "fmt"
4
5type Command interface {
6 Execute()
7}
8
9type StartCommand struct {
10 mb *MotherBoard
11}
12
13func NewStartCommand(mb *MotherBoard) *StartCommand {
14 return &StartCommand{
15 mb: mb,
16 }
17}
18
19func (c *StartCommand) Execute() {
20 c.mb.Start()
21}
22
23type RebootCommand struct {
24 mb *MotherBoard
25}
26
27func NewRebootCommand(mb *MotherBoard) *RebootCommand {
28 return &RebootCommand{
29 mb: mb,
30 }
31}
32
33func (c *RebootCommand) Execute() {
34 c.mb.Reboot()
35}
36
37type MotherBoard struct{}
38
39func (*MotherBoard) Start() {
40 fmt.Print("system starting\n")
41}
42
43func (*MotherBoard) Reboot() {
44 fmt.Print("system rebooting\n")
45}
46
47type Box struct {
48 button1 Command
49 button2 Command
50}
51
52func NewBox(button1, button2 Command) *Box {
53 return &Box{
54 button1: button1,
55 button2: button2,
56 }
57}
58
59func (b *Box) PressButton1() {
60 b.button1.Execute()
61}
62
63func (b *Box) PressButton2() {
64 b.button2.Execute()
65}
策略模式
它能让你定义一系列算法, 并将每种算法分别放入独立的类中, 以使算法的对象能够相互替换。
代码实现
1package main
2
3import "fmt"
4
5type Payment struct {
6 context *PaymentContext
7 strategy PaymentStrategy
8}
9
10type PaymentContext struct {
11 Name, CardID string
12 Money int
13}
14
15func NewPayment(name, cardid string, money int, strategy PaymentStrategy) *Payment {
16 return &Payment{
17 context: &PaymentContext{
18 Name: name,
19 CardID: cardid,
20 Money: money,
21 },
22 strategy: strategy,
23 }
24}
25
26func (p *Payment) Pay() {
27 p.strategy.Pay(p.context)
28}
29
30type PaymentStrategy interface {
31 Pay(*PaymentContext)
32}
33
34type Cash struct{}
35
36func (*Cash) Pay(ctx *PaymentContext) {
37 fmt.Printf("Pay $%d to %s by cash\n", ctx.Money, ctx.Name)
38}
39
40type Bank struct{}
41
42func (*Bank) Pay(ctx *PaymentContext) {
43 fmt.Printf("Pay $%d to %s by bank account %s\n", ctx.Money, ctx.Name, ctx.CardID)
44}
45
46func main() {
47 payment := NewPayment("Ada", "", 123, &Cash{})
48 payment.Pay()
49
50 payment = NewPayment("Bob", "0002", 888, &Bank{})
51 payment.Pay()
52}
53
54/*
55Pay $123 to Ada by cash
56Pay $888 to Bob by bank account 0002
57*/
状态模式
让你能在一个对象的内部状态变化时改变其行为, 使其看上去就像改变了自身所属的类一样。
代码实现
1package main
2
3import (
4 "fmt"
5)
6
7// Machine 状态机
8type Machine struct {
9 state IState
10}
11
12// SetState 更新状态
13func (m *Machine) SetState(state IState) {
14 m.state = state
15}
16
17// GetStateName 获取当前状态
18func (m *Machine) GetStateName() string {
19 return m.state.GetName()
20}
21
22func (m *Machine) Approval() {
23 m.state.Approval(m)
24}
25
26func (m *Machine) Reject() {
27 m.state.Reject(m)
28}
29
30// IState 状态
31type IState interface {
32 // 审批通过
33 Approval(m *Machine)
34 // 驳回
35 Reject(m *Machine)
36 // 获取当前状态名称
37 GetName() string
38}
39
40// leaderApproveState 直属领导审批
41type leaderApproveState struct{}
42
43// Approval 获取状态名字
44func (leaderApproveState) Approval(m *Machine) {
45 fmt.Println("leader 审批成功")
46 m.SetState(GetFinanceApproveState())
47}
48
49// GetName 获取状态名字
50func (leaderApproveState) GetName() string {
51 return "LeaderApproveState"
52}
53
54// Reject 获取状态名字
55func (leaderApproveState) Reject(m *Machine) {}
56
57func GetLeaderApproveState() IState {
58 return &leaderApproveState{}
59}
60
61// financeApproveState 财务审批
62type financeApproveState struct{}
63
64// Approval 审批通过
65func (f financeApproveState) Approval(m *Machine) {
66 fmt.Println("财务审批成功")
67 fmt.Println("出发打款操作")
68}
69
70// 拒绝
71func (f financeApproveState) Reject(m *Machine) {
72 m.SetState(GetLeaderApproveState())
73}
74
75// GetName 获取名字
76func (f financeApproveState) GetName() string {
77 return "FinanceApproveState"
78}
79
80// GetFinanceApproveState GetFinanceApproveState
81func GetFinanceApproveState() IState {
82 return &financeApproveState{}
83}
84
85func main() {
86 m := &Machine{state: GetLeaderApproveState()}
87 fmt.Println("LeaderApproveState", m.GetStateName())
88 m.Approval()
89 fmt.Println("FinanceApproveState", m.GetStateName())
90 m.Reject()
91 fmt.Println("LeaderApproveState", m.GetStateName())
92 m.Approval()
93 fmt.Println("FinanceApproveState", m.GetStateName())
94 m.Approval()
95}
96
97/*
98LeaderApproveState LeaderApproveState
99leader 审批成功
100FinanceApproveState FinanceApproveState
101LeaderApproveState LeaderApproveState
102leader 审批成功
103FinanceApproveState FinanceApproveState
104财务审批成功
105出发打款操作
106*/
迭代器模式
让你能在不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素。
代码实现
1package main
2
3import "fmt"
4
5type collection interface {
6 createIterator() iterator
7}
8
9type userCollection struct {
10 users []*user
11}
12
13func (u *userCollection) createIterator() iterator {
14 return &userIterator{
15 users: u.users,
16 }
17}
18
19type iterator interface {
20 hasNext() bool
21 getNext() *user
22}
23
24type userIterator struct {
25 index int
26 users []*user
27}
28
29func (u *userIterator) hasNext() bool {
30 if u.index < len(u.users) {
31 return true
32 }
33 return false
34
35}
36func (u *userIterator) getNext() *user {
37 if u.hasNext() {
38 user := u.users[u.index]
39 u.index++
40 return user
41 }
42 return nil
43}
44
45type user struct {
46 name string
47 age int
48}
49
50func main() {
51
52 user1 := &user{
53 name: "a",
54 age: 30,
55 }
56 user2 := &user{
57 name: "b",
58 age: 20,
59 }
60
61 userCollection := &userCollection{
62 users: []*user{user1, user2},
63 }
64
65 iterator := userCollection.createIterator()
66
67 for iterator.hasNext() {
68 user := iterator.getNext()
69 fmt.Printf("User is %+v\n", user)
70 }
71}
72
73/*
74User is &{name:a age:30}
75User is &{name:b age:20}
76*/
访问者模式
访问者模式可以给一系列对象透明的添加功能,并且把相关代码封装到一个类中。
对象只要预留访问者接口Accept
则后期为对象添加功能的时候就不需要改动对象。
代码实现
1package main
2
3import "fmt"
4
5type Customer interface {
6 Accept(Visitor)
7}
8
9type Visitor interface {
10 Visit(Customer)
11}
12
13type EnterpriseCustomer struct {
14 name string
15}
16
17type CustomerCol struct {
18 customers []Customer
19}
20
21func (c *CustomerCol) Add(customer Customer) {
22 c.customers = append(c.customers, customer)
23}
24
25func (c *CustomerCol) Accept(visitor Visitor) {
26 for _, customer := range c.customers {
27 customer.Accept(visitor)
28 }
29}
30
31func NewEnterpriseCustomer(name string) *EnterpriseCustomer {
32 return &EnterpriseCustomer{
33 name: name,
34 }
35}
36
37func (c *EnterpriseCustomer) Accept(visitor Visitor) {
38 visitor.Visit(c)
39}
40
41type IndividualCustomer struct {
42 name string
43}
44
45func NewIndividualCustomer(name string) *IndividualCustomer {
46 return &IndividualCustomer{
47 name: name,
48 }
49}
50
51func (c *IndividualCustomer) Accept(visitor Visitor) {
52 visitor.Visit(c)
53}
54
55type ServiceRequestVisitor struct{}
56
57func (*ServiceRequestVisitor) Visit(customer Customer) {
58 switch c := customer.(type) {
59 case *EnterpriseCustomer:
60 fmt.Printf("serving enterprise customer %s\n", c.name)
61 case *IndividualCustomer:
62 fmt.Printf("serving individual customer %s\n", c.name)
63 }
64}
65
66// only for enterprise
67type AnalysisVisitor struct{}
68
69func (*AnalysisVisitor) Visit(customer Customer) {
70 switch c := customer.(type) {
71 case *EnterpriseCustomer:
72 fmt.Printf("analysis enterprise customer %s\n", c.name)
73 }
74}
75
76func main() {
77 c := &CustomerCol{}
78 c.Add(NewEnterpriseCustomer("A company"))
79 c.Add(NewEnterpriseCustomer("B company"))
80 c.Add(NewIndividualCustomer("bob"))
81 c.Accept(&ServiceRequestVisitor{})
82
83 c = &CustomerCol{}
84 c.Add(NewEnterpriseCustomer("A company"))
85 c.Add(NewIndividualCustomer("bob"))
86 c.Add(NewEnterpriseCustomer("B company"))
87 c.Accept(&AnalysisVisitor{})
88}
89
90/*
91serving enterprise customer A company
92serving enterprise customer B company
93serving individual customer bob
94analysis enterprise customer A company
95analysis enterprise customer B company
96*/
备忘录模式
备忘录模式用于保存程序内部状态到外部,又不希望暴露内部状态的情形。
程序内部状态使用窄接口传递给外部进行存储,从而不暴露程序实现细节。
备忘录模式同时可以离线保存内部状态,如保存到数据库,文件等。
代码实现
1package main
2
3import "fmt"
4
5type Memento interface{}
6
7type Game struct {
8 hp, mp int
9}
10
11type gameMemento struct {
12 hp, mp int
13}
14
15func (g *Game) Play(mpDelta, hpDelta int) {
16 g.mp += mpDelta
17 g.hp += hpDelta
18}
19
20func (g *Game) Save() Memento {
21 return &gameMemento{
22 hp: g.hp,
23 mp: g.mp,
24 }
25}
26
27func (g *Game) Load(m Memento) {
28 gm := m.(*gameMemento)
29 g.mp = gm.mp
30 g.hp = gm.hp
31}
32
33func (g *Game) Status() {
34 fmt.Printf("Current HP:%d, MP:%d\n", g.hp, g.mp)
35}
36
37func main() {
38 game := &Game{
39 hp: 10,
40 mp: 10,
41 }
42
43 game.Status()
44 progress := game.Save()
45
46 game.Play(-2, -3)
47 game.Status()
48
49 game.Load(progress)
50 game.Status()
51
52}
53
54/*
55Current HP:10, MP:10
56Current HP:7, MP:8
57Current HP:10, MP:10
58*/
解释器模式
解释器模式定义一套语言文法,并设计该语言解释器,使用户能使用特定文法控制解释器行为。
解释器模式的意义在于,它分离多种复杂功能的实现,每个功能只需关注自身的解释。
对于调用者不用关心内部的解释器的工作,只需要用简单的方式组合命令就可以。
代码实现
1package main
2
3import (
4 "fmt"
5 "strconv"
6 "strings"
7)
8
9type Node interface {
10 Interpret() int
11}
12
13type ValNode struct {
14 val int
15}
16
17func (n *ValNode) Interpret() int {
18 return n.val
19}
20
21type AddNode struct {
22 left, right Node
23}
24
25func (n *AddNode) Interpret() int {
26 return n.left.Interpret() + n.right.Interpret()
27}
28
29type MinNode struct {
30 left, right Node
31}
32
33func (n *MinNode) Interpret() int {
34 return n.left.Interpret() - n.right.Interpret()
35}
36
37type Parser struct {
38 exp []string
39 index int
40 prev Node
41}
42
43func (p *Parser) Parse(exp string) {
44 p.exp = strings.Split(exp, " ")
45
46 for {
47 if p.index >= len(p.exp) {
48 return
49 }
50 switch p.exp[p.index] {
51 case "+":
52 p.prev = p.newAddNode()
53 case "-":
54 p.prev = p.newMinNode()
55 default:
56 p.prev = p.newValNode()
57 }
58 }
59}
60
61func (p *Parser) newAddNode() Node {
62 p.index++
63 return &AddNode{
64 left: p.prev,
65 right: p.newValNode(),
66 }
67}
68
69func (p *Parser) newMinNode() Node {
70 p.index++
71 return &MinNode{
72 left: p.prev,
73 right: p.newValNode(),
74 }
75}
76
77func (p *Parser) newValNode() Node {
78 v, _ := strconv.Atoi(p.exp[p.index])
79 p.index++
80 return &ValNode{
81 val: v,
82 }
83}
84
85func (p *Parser) Result() Node {
86 return p.prev
87}
88
89func main() {
90 p := &Parser{}
91 p.Parse("1 + 2 + 3 - 4 + 5 - 6")
92 res := p.Result().Interpret()
93 expect := 1
94 if res != expect {
95 fmt.Println(res,expect)
96 }
97}
中介模式
中介者模式封装对象之间互交,使依赖变的简单,并且使复杂互交简单化,封装在中介者中。
例子中的中介者使用单例模式生成中介者。
中介者的change使用switch判断类型。
代码实现
1package main
2
3import (
4 "fmt"
5 "strings"
6)
7
8type CDDriver struct {
9 Data string
10}
11
12func (c *CDDriver) ReadData() {
13 c.Data = "music,image"
14
15 fmt.Printf("CDDriver: reading data %s\n", c.Data)
16 GetMediatorInstance().changed(c)
17}
18
19type CPU struct {
20 Video string
21 Sound string
22}
23
24func (c *CPU) Process(data string) {
25 sp := strings.Split(data, ",")
26 c.Sound = sp[0]
27 c.Video = sp[1]
28
29 fmt.Printf("CPU: split data with Sound %s, Video %s\n", c.Sound, c.Video)
30 GetMediatorInstance().changed(c)
31}
32
33type VideoCard struct {
34 Data string
35}
36
37func (v *VideoCard) Display(data string) {
38 v.Data = data
39 fmt.Printf("VideoCard: display %s\n", v.Data)
40 GetMediatorInstance().changed(v)
41}
42
43type SoundCard struct {
44 Data string
45}
46
47func (s *SoundCard) Play(data string) {
48 s.Data = data
49 fmt.Printf("SoundCard: play %s\n", s.Data)
50 GetMediatorInstance().changed(s)
51}
52
53type Mediator struct {
54 CD *CDDriver
55 CPU *CPU
56 Video *VideoCard
57 Sound *SoundCard
58}
59
60var mediator *Mediator
61
62func GetMediatorInstance() *Mediator {
63 if mediator == nil {
64 mediator = &Mediator{}
65 }
66 return mediator
67}
68
69func (m *Mediator) changed(i interface{}) {
70 switch inst := i.(type) {
71 case *CDDriver:
72 m.CPU.Process(inst.Data)
73 case *CPU:
74 m.Sound.Play(inst.Sound)
75 m.Video.Display(inst.Video)
76 }
77}
78
79func main() {
80 mediator := GetMediatorInstance()
81 mediator.CD = &CDDriver{}
82 mediator.CPU = &CPU{}
83 mediator.Video = &VideoCard{}
84 mediator.Sound = &SoundCard{}
85
86 //Tiggle
87 mediator.CD.ReadData()
88
89 fmt.Printf("%#v\n", mediator)
90}
91
92/*
93CDDriver: reading data music,image
94CPU: split data with Sound music, Video image
95SoundCard: play music
96VideoCard: display image
97&main.Mediator{CD:(*main.CDDriver)(0xc000010250), CPU:(*main.CPU)(0xc000060040), Video:(*main.VideoCard)(0xc000010260), Sound:(*main.SoundCard)(0xc000010270)}
98*/
References
https://github.com/senghoo/golang-design-pattern